Exercise 1:
In this exercise we consider two Diffie-Hellman-related schemes in the view of the Hidden Number Problem. In what follows we assume a group of prime order p and α being its generator. We set $l = \sqrt{\log p + \log \log p}$. In all cases you should modify the proof of Satz 76.

1. **Key Sharing.** Bob picks a random $r \leftarrow \mathbb{Z}_p$ and send α^r to Alice. Alice picks a random $s \leftarrow \mathbb{Z}_p$ and sends $(\alpha^r)^s$ to Bob. Bob computes $(\alpha^r)^{s/r} = \alpha^s$ which is the shared key. Now \mathcal{A} on input $(\alpha^{r(s+x)}, \alpha^r)$ outputs l MSB of α^{s+x}. Apply \mathcal{A} to compute α^s efficiently.

2. **ElGamal Encryption.** For $pk = (p, \alpha, \beta = \alpha^a)$ and $sk = a$: $\operatorname{Enc}_{pk}(m) = (\alpha^r, m\beta^r)$ for some random $r \leftarrow \mathbb{Z}_p$. Let \mathcal{A} be an algorithm that on input $\alpha^{a+x}, \alpha^r, m\beta^r$ outputs l MSB of $m(\alpha^{-r})^x$. Show how to compute m in polynomial time using \mathcal{A}.

Exercise 2:
Let $N = p^k$ be a prime-power. Show how to find k and p efficiently.

Exercise 3:
Factor $N = 52907$ using $B = \{2, 3, 5\}$.