Exercise 1:
Let α be a generator of \mathbb{Z}_q^* for prime q. Show that for $i \leftarrow \{1, \ldots, q - 1\}$

$$\text{ord}_{\mathbb{Z}_q^*}(\alpha^i) = \frac{q - 1}{\text{GCD}(i, q - 1)}.$$

Elliptic Curves

Exercise 2:

- Suppose that a cubic polynomial $X^3 + AX + B$ factors as

 $$X^3 + AX + B = (X - r_1)(X - r_2)(X - r_3).$$

 Prove that $4A^3 + 27B^2 = 0$ is and only if two (or more) of r_1, r_2, r_3 are the same.

- Let $P = (x, y)$ be a point on the elliptic curve E given by $y^2 = x^3 + Ax + b$. Show that if $y = 0$ then $3x^2 + A \neq 0$.

Exercise 3:
Show that the number of elliptic curves defined over \mathbb{F}_p for prime p is $p^2 - p$.

Exercise 4:
Show that three points on an elliptic curve add to \mathcal{O} if and only if they are collinear.